Clinical Management of Arthrofibrosis

State of the Art and Therapeutic Outlook

Ishaq O. Ibrahim, MD
Ara Nazarian, PhD
Edward K. Rodriguez, MD, PhD

Investigation performed at Beth Israel Deaconess Medical Center, Boston, Massachusetts

Abstract

» Arthrofibrosis is a pathologic condition that is characterized by excessive periarticular scar-tissue formation. Arthrofibrosis may occur secondary to injury, surgical trauma, hemarthrosis, or infection, or it may occur idiopathically.

» The pathogenesis of arthrofibrosis is incompletely understood but involves the dysregulation of normal reparative pathways, with transforming growth factor-beta (TGF-β) as a principal mediator.

» Current treatment options for arthrofibrosis primarily involve physiotherapy, operative manipulation, and surgical debridement, all with imperfect results.

» Currently, there are no pharmacologic treatment options for arthrofibrosis. This has prompted increased investigational interest in the development of antifibrotic intra-articular therapies.

Arthrofibrosis (AF) is a pathologic condition that is characterized by excessive periarticular scar-tissue formation, resulting in joint stiffness and soft-tissue contractures. Periarticular fibrosis, driven by excess collagen production and deposition of extracellular matrix (ECM) within the joint capsule and the surrounding tissues, impairs functional joint motion, leading to difficulties in completing activities of daily living (ADLs). AF may occur secondary to injury, surgical trauma, hemarthrosis, or infection, or it may occur idiopathically. AF presents a serious limitation for patients and continues to pose challenges for clinicians who are tasked with its prevention and treatment. In addition to loss of motion, patients commonly experience chronic pain and swelling; they are often treated with prolonged periods of physiotherapy, with uncertain and inconsistent outcomes.

AF represents a broad spectrum of disease, the clinical implications and sequelae of which are encountered by orthopaedic specialists in various clinical contexts. While AF can occur in most joints, the knee is the most common site where it may occur in a surgical orthopaedic setting secondary to cruciate ligament reconstruction surgery, total knee arthroplasty (TKA), or osteosynthesis of periarticular fractures. The goals of this review are to provide an up-to-date report on the current understanding of AF, review the most commonly encountered forms of AF in the orthopaedic clinic, describe currently available treatment options, and explore therapeutic outlooks and future directions for the treatment of AF.

Pathogenesis

AF is a fibrosing disorder of the synovial membrane. The pathophysiology of AF is incompletely understood but involves the aberrant proliferation of collagen, ECM, and, often, heterotopic bone within the involved joint and the surrounding soft tissues. Several cytokines and growth factors are implicated in the pathogenesis of arthrofibrosis.
AF. These include, but are not limited to, interleukin (IL)-1, IL-6, and IL-17, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), platelet-derived growth factor (PDGF), β-catenin, and bone morphogenetic protein (BMP). TGF-β, a ubiquitous signaling protein with well-described roles in physiologic tissue repair and scar formation, has been identified as the primary driver of fibrosis. Tissue injury induces production of TGF-β and other proinflammatory cytokines that further drive the inflammatory cascade and ultimately lead to the activation and differentiation of myofibroblasts, which in turn produce ECM. TGF-β also contributes to fibrosis by inducing transcription of the COL1A1 and COL1A2 genes that encode type-I collagen, the most abundant component of a fibrotic scar. Failure of apoptosis and autophagy results in excess deposition of dense fibrous tissue within the joint and the periarticular tissues. The underlying cause for dysregulation, however, remains uncertain. The profibrotic activity of β-catenin also is well-recognized through its previously described role in upregulating cell proliferation through activation of the Wnt pathway. The presence of BMP-2 in immunohistochemical specimens suggests that endochondral ossification and heterotopic bone formation also may contribute to the loss of motion that is observed in patients with AF.

Common Orthopaedic Clinical Presentations

Knee Ligament Reconstruction

AF is a well-described complication of anterior cruciate ligament (ACL) reconstruction surgery, with reported rates as high as 35% to 38%. The prevalence of AF is greater with multiligamentous knee injuries resulting from higher-energy injury mechanisms, which produce a greater degree of soft-tissue damage. As such, motion loss is most common after traumatic knee dislocation, with rates of postoperative stiffness as high as 57%. Postoperative motion loss in this patient population is particularly devastating and associated with poor outcomes and substantial patient dissatisfaction. Persistent losses in knee motion also have been associated with higher rates of osteoarthritis.

Normal knee motion involves 3 sub-arcs of motion consisting of terminal extension, active flexion, and passive flexion. The terminal extension arc permits the knee to lock (the so-called “screw-home” mechanism), allowing the quadriceps to relax during stance. The functional motion arc of the knee is from 10° to 120° and encompasses the range that is required for most daily activities. Motion loss in the knee is of variable consequence depending on the patient’s functional demands and pre-morbid level of function. Even minor losses of motion, however, are poorly tolerated in young and active patients. Losses in flexion are better tolerated than losses in extension, which require chronic quadriceps activation to maintain stance and increase contact forces along the patellofemoral joint.

Both preventative and Interventional treatment strategies for AF that is associated with ligament reconstruction have been extensively studied in the literature. Several risk factors for AF are described, including technical errors in graft placement, concomitant extra-articular procedures (e.g., combined medial collateral ligament reconstruction), infection, prolonged immobilization, and timing of surgery. Common technical errors include anterior tibial tunnel placement, leading to graft impingement in extension, and excessive anteromedial placement, which ultimately limits flexion. The literature regarding the timing of ACL reconstruction is controversial. A 3 or 4-week delay in reconstruction after injury has been shown to reduce rates of AF following ACL surgery. Delaying reconstruction is speculated to decrease concentrations of inflammatory mediators and profibrotic signaling proteins prior to exposing the knee to additional insult. Some studies have indicated a greater effect of preoperative range-of-motion training (in particular, achieving full extension) on postoperative motion and overall patient outcomes. Modern perioperative and rehabilitative protocols have allowed patients to reclaim motion at high rates. Despite this, a small subset of patients ultimately requires secondary operations, including lysis of adhesions (LOA) and revision reconstruction to address postoperative stiffness.

Lysis of Adhesions

Both localized and global forms of AF have been described after ACL reconstruction. In the localized form, increased soft-tissue volume is restricted to the anterior compartment of the knee. A “cyclops” lesion, or soft-tissue nodule anterior to the tibial insertion of the ACL, often is present and impedes full knee extension. In the global form, fibrosis is more extensive and generally involves the suprapatellar pouch and gutters. In a prospective study by Aglietti et al., only 37% of patients with global forms of AF had a satisfactory outcome following open or LOA. Once AF has been diagnosed, earlier surgical intervention has been associated with improved outcomes. For patients in whom LOA is unsuccessful, revision reconstruction is the final option to salvage knee motion.

Total Knee Arthroplasty

AF is a leading cause of failure following TKA. AF accounts for up to 10% of TKA revisions that are performed within 5 years of surgery and 28% of hospital readmissions after knee replacement. As such, the individual and economic burdens of AF after TKA are substantial. Up to 25% of patients undergoing secondary surgical procedures require >1 operation for persistent stiffness. Postoperative knee range of motion of 0° to 110° after TKA is considered functionally adequate and is an accepted indicator of successful knee arthroplasty. Excessive scar-tissue
Early and aggressive physiotherapy as soon as feasible after knee replacement also has been shown to limit the rate of post-TKA AF.

Manipulation Under Anesthesia

Manipulation under anesthesia (MUA) is the preferred treatment for post-TKA stiffness that has not responded to physiotherapy. Specific indications for and timing of MUA are not standardized and vary in the literature and in clinical practice. MUA is most effective if performed within 3 months of surgery, presumably prior to scar-tissue maturation and contracture formation. Recent studies have demonstrated an inverse relationship between the timing of MUA and final range of motion after manipulation. Despite some controversies specific to the practice of MUA, such as indication and timing, it remains widely accepted as the first-line treatment for post-TKA AF.

MUA is typically performed under general anesthesia. Addition of a paralytic agent to facilitate muscle relaxation may be given at the discretion of the surgeon and the anesthesia team. The hip is generally flexed to 90°, and gentle steady pressure is exerted to flex the knee while grasping the tibia proximally to limit the lever arm on the joint. The procedure is completed when the surgeon is no longer able to feel or hear adhesion fracture. Aggressive manipulation, however, may generate an inflammatory response and produce additional scarring. As such, some authors have recommended preoperative administration of intravenous glucocorticoids and perioperative oral glucocorticoids, as well as use of a continuous passive motion (CPM) device in the postoperative period. However, evidence for the efficacy of these measures in improving range of motion following MUA is limited.

Mean improvement in range of motion following MUA is approximately 30° to 47°. Longer-term follow-up studies have reported a mean improvement in range of motion of approximately 30° at 10 years of follow-up. Repeat MUA has been associated with mixed results, and consensus regarding its effectiveness has not been reached.

Static progressive stretching devices, including the JAS brace (Joint Active Systems), and, more recently, the STAK (Self Treatment Assisted Knee Flexion) tool, may provide patients with an alternative noninvasive treatment modality with similar efficacy to MUA. Static progressive devices can be powerful adjuncts to physiotherapy. An early clinical study evaluating the efficacy of the STAK tool in patients with post-TKA AF observed a mean improvement in knee flexion of 30°, with similar improvements in knee outcome scores at a mean of 10.5 weeks.

Lysis of Adhesions

Patients with persistent stiffness despite aggressive physiotherapy and/or MUA may benefit from arthroscopic or open LOA. Moderate improvements in both extension and flexion have been described after arthroscopic LOA. Open LOA has demonstrated similar efficacy, but with increased risk of wound complications, extensor mechanism injury, and deep infection. Arthroscopic and open LOA have yielded similar results to MUA and are rarely employed in clinical practice.

Revision Arthroplasty

As a last resort, revision TKA may be necessary to address refractory post-TKA stiffness. Revision TKA also should be considered in cases of overt component malpositioning. Outcomes of revision TKA for AF have been sparsely examined in the literature, and the few studies examining outcomes in this patient population have found outcomes to lag behind those for patients undergoing revision TKA for other indications, including infection, loosening, and wear. Furthermore, AF is likely to develop again after revision TKA, and >25% of patients undergoing revision TKA may ultimately require a second revision to address persistent stiffness.

Periarticular Fractures

Anatomic reduction and stable fixation of periarticular fractures is critical for successful healing and for minimizing the rate of posttraumatic arthritis. In this regard, postoperative practices historically involved lengthy periods of immobilization in an effort to prevent late fracture displacement. Prolonged immobilization, however, is now understood to predispose to AF, and practice habits have evolved in favor of rigid fixation and early motion. The severity of impairment that is present once AF develops depends heavily on the joint that is involved and the degree of functional motion that is lost. Risk factors for AF following periarticular fracture fixation are numerous, and few, in fact, are modifiable. In addition to prolonged immobilization, additional well-described risk factors for AF include high-energy injury mechanisms, external fixator use, and infection.

Proximal Humeral Fractures

The semiconstrained nature of the shoulder allows for an impressive breadth of motion. As a result, a well-functioning shoulder may compensate for motion losses occurring in other areas of the upper limb. The functional range of motion of the shoulder is fairly restrained in comparison with the true limits of glenohumeral motion. Just 120° of forward flexion, 130° of abduction, and 60° of external rotation are required to perform most ADLs. On the other hand, a well-functioning glenohumeral joint can achieve approximately 170° of forward flexion, 180° of abduction, and 100° of external rotation. Early passive and active-assisted motion are the mainstays of modern rehabilitation protocols because of poor tolerance for antigravity motion and weight-bearing before fracture-healing. Modest motion loss is expected following internal fixation of proximal humeral fractures but is usually of limited functional consequence. In cases where motion loss exceeds the functional range, patients may be able to accommodate satisfactorily through the elbow and the wrist. Scapular substitution, whereby patients with painful or stiff shoulders achieve functional motion through the scapulothoracic joint, may occur as a result of scapular recruitment early in the recovery period. This may offer a patient effective shoulder motion at the expense of abnormal motion through the scapulothoracic joint, and recovery of true glenohumeral motion may become more difficult secondary to altered scapular mechanics.

Nonetheless, AF is uncommon after fixation of proximal humeral fractures. For the rare cases that do arise, MUA is not recommended because of the high risk of fracture. Arthroscopic capsular release has been shown to be effective in improving range of motion. In 37 patients with poor range of motion after locked plating, Katthagen et al. reported a 122% increase in forward flexion, a 126% increase in abduction, a 140% increase in external rotation, and a 140% increase in internal rotation at 24 months following arthroscopic capsular release. Aside from continued physiotherapy and arthroscopic capsular release, treatment options for motion loss after proximal humeral fracture fixation are limited.

Periarticular Elbow Fractures

In comparison to the shoulder, the elbow is a highly sensitive and “unforgiving joint.” Common traumatic elbow injuries include isolated fractures of the distal aspect of the humerus, the olecranon, and the radial head, as well as combined osseous and ligamentous injury, classically in the form of the “terrible triad” injury, which involves injury to the radial head, the coronoid process, and the lateral ulnar collateral ligament (LUCCL). A modest degree of motion loss is expected following most elbow trauma, and terminal extension rarely is recovered.

A 100° arc of elbow motion is important for independence with most ADLs. Physiologic elbow motion averages 0° of extension to 146° of flexion. Modest losses in elbow extension are generally well-tolerated as long as sufficient elbow flexion remains to permit independence in hygiene and feeding. Rigid fixation of periarticular elbow fractures permitting early rehabilitation is necessary for preventing AF following elbow trauma. Osteoporosis and bone loss, however, present frequently encountered challenges during fixation of elbow fractures. As a result, construct stability may not always be sufficient to permit early motion as excess motion through the fracture site may predispose to nonunion and fixation failure.
approximately 100° of knee flexion, allowing for independence with most ADLs. Motion outcomes following open treatment of tibial plateau fractures are similar.

If stiffness persists despite aggressive physiotherapy, MUA may be effective in improving knee range of motion following open treatment of distal femoral and tibial plateau fractures. The timing of MUA has been shown to influence outcome; earlier MUA is associated with greater and more durable improvement in motion. Generally, fracture-healing should be complete prior to MUA, and MUA should be performed prior to concomitant implant removal to prevent fracture through vacant screw holes. Open release and quadricepsplasty are additional options for severe cases that are unresponsive to manipulation.

Adhesive Capsulitis
Adhesive capsulitis, known more broadly as frozen shoulder syndrome (FSS), is a pathologic condition that is characterized by pain and restriction of both active and passive shoulder motion in the setting of normal radiographs. The pathophysiology of FSS is incompletely understood but is believed to occur secondary to inflammatory and fibrotic processes occurring within the glenohumeral joint. Two primary forms of FSS are described. Primary idiopathic frozen shoulder is most common and occurs without discernible cause. Secondary frozen shoulder, in which there is a predisposing disease or injury process, carries a poorer prognosis. While widely considered a benign self-limited condition, the disease course may last for up to 2 years and often results in some degree of permanent motion loss.

Capsular contracture is the principal feature of FSS. Fibrosis occurs secondary to imbalances in fibroblast activity and collagen degradation by matrix metalloproteinases (MMPs), resulting in overproduction of ECM as is observed in other fibrosing disorders. As in histological samples of joints with AF, increased levels of TGF-β and PDGF have been identified in patients with FSS, suggesting activation of a similar fibrosing cascade. The pathogenesis of frozen shoulder also involves inflammatory mechanisms, which may ultimately stimulate fibroblast proliferation.

Loss of passive range of motion, most commonly external rotation, is key to differentiating FSS from other disorders of the shoulder. Pathoanatomically, FSS may be characterized by anserousuperior capsular contracture secondary to scarring through the rotator interval, producing stiffness in abduction, or anterosuperior contracture, which limits external rotation in abduction. Shoulder radiographs are characteristically normal despite often marked shoulder stiffness. The disease course involves 3 poorly defined stages of variable length: the “freezing” stage, which is characterized primarily by pain and restricted motion; the “frozen” stage, which is predominantly defined by stiffness; and the “thawing” stage, during which motion returns and the symptoms primarily resolve. While considered “self-limited,” the disease process often is protracted, with residual motion loss and a high rate of recurrence.

Physiotherapy, primarily involving passive mobilization and capsular stretching, is the mainstay of treatment for adhesive capsulitis. Physiotherapy may be counterproductive in the early painful stages of the disease. Oral and intra-articular corticosteroids are commonly paired with physiotherapy, despite limited literature supporting a true clinical benefit to their use. Distension arthrography is an invasive procedure consisting of controlled capsular insufflation to promote rupture of capsular contractions, followed by physiotherapy to preserve any improvements in motion. Limited studies on arthrography indicate favorable results in primary FSS and limited efficacy in secondary disease, likely because of the need to address the underlying disease processes. Multiple case series have indicated the long-term benefits of MUA, particularly in patients with disease that is refractory to physiotherapy.

Surgical treatment options for FSS include arthroscopic and capsular release. Arthroscopic release often is combined with MUA, which may be performed before or after arthroscopy depending on surgeon preference. The primary focus of open or arthroscopic capsular release is the debridement of contracted tissues from the rotator interval and the coracohumeral ligament. Occasionally, lengthening of the subscapularis tendon and/or posterior capsular release are required to restore internal rotation. Prior studies have demonstrated favorable outcomes with both arthroscopic and open techniques. Additional procedures, including subacromial bursectomy, acromioplasty, and subdeltoid debride ment, also may be necessary to clear more extensive adhesions that are observed in secondary cases of FSS occurring after trauma. Open surgical release via a deltopectoral approach may be necessary in patients with disease that is refractory to arthroscopic release.

Therapeutic Outlook
AF remains a challenging problem that is encountered in many aspects of orthopaedic practice. Current treatments for AF primarily involve mechanical disruption of the pathologic adhesions and contractions via aggressive physiotherapy, physical joint manipulation, and surgical release and debridement. While there has been progress in the understanding of AF and the identification of its key biochemical mediators, effective pharmacologic treatments are lacking. In recent years, newer pharmacologic treatments seeking to restore motion in patients with AF by disrupting the fibrotic cascade at the molecular level have shown promise. Some interest has involved intra-articular injections of collagenase Claadstridium histolyticum, which has revolutionized the treatment of Dupuytren disease in the hand throughout the past decade. Prior studies have highlighted the unique similarities of Dupuytren disease and FSS.
However, limited research has focused on the intra-articular administration of collagenease for the treatment of periarticular fibrosis as concerns for cartilage injury often preclude this as a viable treatment option66-68.

The local delivery of antifibrotic agents, primarily relaxin-2, into the affected joint has shown some success.69 Relaxin-2 is an antifibrotic hormone that is secreted by the placenta; it acts to promote tissue laxity by inhibiting fibrogenesis and collagen overexpression69,70. A recent study by Blessing et al. found that multiple intra-articular injections of human relaxin-2 moderate capsular fibrosis and restore baseline shoulder range of motion in a murine model69. Relaxin-2 was found to reduce concentrations of type-I collagen and to inhibit myofibroblast differentiation in the presence of TGF-B1 at the biochemical level. Histologically, murine specimens that are treated with multiple injections of intra-articular relaxin-2 demonstrated normal cellular organization that resembled control specimens, without histological evidence of fibrosis or tissue contracture.71. Treated specimens also demonstrated complete clinical recovery of limb motion comparable with controls. If such effects can be reproduced in human subjects, relaxin-2 has potential as a future pharmacologic treatment for AF.

Overview

The prevention and treatment of AF remain a challenge in multiple areas of orthopaedic practice, including, but not limited to, cruciate ligament reconstruction surgery, TKA, and osteosynthesis of periarticular fractures. Periarticular fibrosis and scar tissue formation restrict joint motion, leading to difficulties in patient function. At present, treatment options for AF are limited to physiotherapy and operative manipulation or debridement. Recent research involving intra-articular antifibrotic agents may offer the promise of an effective pharmacologic treatment option for AF in the future.

Ishaq O. Ibrahim, MD1, Ara Nazarian, PhD1,2,3,4, Edward K. Rodrigues, MD, PhD2,5
1Harvard Combined Orthopaedic Residency Program, Massachusetts General Hospital, Boston, Massachusetts
2Harvard Medical School Orthopaedic Trauma Initiative, Boston, Massachusetts
3Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts
4Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia

ORCID iD for I.O. Ibrahim: 0000-0003-3992-3489
ORCID iD for A. Nazarian: 0000-0002-8217-0953
ORCID iD for E.K. Rodrigues: 0000-0002-8217-0953

References